skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mayta, Victor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lowest events in Lake Titicaca’s water level (LTWL) significantly impact local ecosystems and the drinking water supply in Peru and Bolivia. However, the hydroclimatic mechanisms driving extreme lake-level lowstands remain poorly understood. To investigate these low lake-level events, we analyzed detrended monthly LTWL anomalies, sea surface temperature (SST) datasets covering the period 1921–2023. ERA5 reanalysis covers the period 1940–2023. A multiple linear regression model was developed to compute detrended LTWL anomalies, excluding multidecadal and residual components. Interdecadal Pacific Oscillation (IPO) and Pacific Decadal Oscillation (PDO) indices were also analyzed for the same period. Results indicate that 25% of all LTWL minima events have a short duration of <5 months, while the remaining 75% of all events have a long duration of more than 9 months, respectively. All long-lived LTWL minima events are associated with reduced moisture flow from the Amazon basin toward Lake Titicaca, but the large-scale forcing varies with the phase change of the decadal component in the 11–15 years band of the PDO (PDO11–15 years). Under warm PDO11–15 yearsphases, LTWL minima are driven by an enhanced South American low-level jet (SALLJ) caused by warm SST anomalies over the eastern Pacific Ocean. Warm SST anomalies over tropical North Atlantic and central Pacific cold events, which reinforce the cold PDO11–15 yearsphases, driving long-lived LTWL minima through the reduction of SALLJ. Conversely, long-lived LTWL minima events under neutral PDO11–15 yearsphases are caused by westerly flow anomalies confined to the Peruvian Altiplano. Therefore, PDO and IPO do not drive long-lived LTWL minima events because their relationship does not remain consistent over time. In conclusion, long-lived LTWL minima events exhibit a regional nature and are not driven by the PDO or IPO, as LTWL shows no consistent relationship with these decadal SST modes over time. 
    more » « less
    Free, publicly-accessible full text available May 7, 2026
  2. Abstract A better understanding of the relative roles of internal climate variability and external contributions, from both natural (solar, volcanic) and anthropogenic greenhouse gas forcing, is important to better project future hydrologic changes. Changes in the evaporative demand play a central role in this context, particularly in tropical areas characterized by high precipitation seasonality, such as the tropical savannah and semi-desertic biomes. Here we present a set of geochemical proxies in speleothems from a well-ventilated cave located in central-eastern Brazil which shows that the evaporative demand is no longer being met by precipitation, leading to a hydrological deficit. A marked change in the hydrologic balance in central-eastern Brazil, caused by a severe warming trend, can be identified, starting in the 1970s. Our findings show that the current aridity has no analog over the last 720 years. A detection and attribution study indicates that this trend is mostly driven by anthropogenic forcing and cannot be explained by natural factors alone. These results reinforce the premise of a severe long-term drought in the subtropics of eastern South America that will likely be further exacerbated in the future given its apparent connection to increased greenhouse gas emissions. 
    more » « less